Subject Area: Science
Course Number: 200320
Course Title: Physical Science Honors
Credit: 1.0
Will meet graduation requirement for Science

A. Major Concepts/Content. The purpose of this course is to provide opportunities to study the concepts of matter, energy, and forces, and their applications through exploratory investigations and activities.

The content should include, but not be limited to, the following:

- unifying concepts and processes of science
- structure of atoms
- structure and properties of matter
- chemical reactions
- entropy and conservation of energy
- interactions of energy and matter
- motions and forces
- interactions among science, technology, and society

This course shall integrate the Goal 3 Student Performance Standards of the Florida System of School Improvement and Accountability as appropriate to the content and processes of the subject matter.

B. Special Note. This course shall include laboratory investigations which incorporate the use of measurement, problem solving, laboratory apparatus, safety procedures, and experimental procedures.

Students earning credit in Physical Science Honors may not earn credit in Fundamentals of Physical Science or Physical Science.

The course requirements for this honors course are consistent with Physical Science, Course Number 2003310. The district shall develop a description of additional requirements to provide for in-depth or enriched study of the course requirements.
C. **Course Requirements.** These requirements include, but are not limited to, the benchmarks from the Sunshine State Standards that are most relevant to this course. Benchmarks correlated with a specific course requirement may also be addressed by other course requirements as appropriate.

Benchmarks from Science, Strand H, should not be taught and assessed in isolation, but should be combined with other benchmarks listed for this course.

After successfully completing this course, the student will:

1. **Demonstrate understanding of the unifying concepts and processes of science.**

 SC.H.1.4.1 know that investigations are conducted to explore new phenomena, to check on previous results, to test how well a theory predicts, and to compare different theories.

 SC.H.1.4.2 know that from time to time, major shifts occur in the scientific view of how the world works, but that more often, the changes that take place in the body of scientific knowledge are small modifications of prior knowledge.

 SC.H.1.4.3 understand that no matter how well one theory fits observations, a new theory might fit them as well or better, or might fit a wider range of observations, because in science, the testing, revising, and occasional discarding of theories, new and old, never ends and leads to an increasingly better understanding of how things work in the world, but not to absolute truth.

 SC.H.1.4.4 know that scientists in any one research group tend to see things alike and that therefore scientific teams are expected to seek out the possible sources of bias in the design of their investigations and in their data analysis.

 SC.H.1.4.5 understand that new ideas in science are limited by the context in which they are conceived, are often rejected by the scientific establishment, sometimes spring from unexpected findings, and usually grow slowly from many contributors.

 SC.H.1.4.6 understand that in the short run, new ideas that do not mesh well with mainstream ideas in science often encounter vigorous criticism and that in the long run, theories are judged by how they fit with other theories, the range of observations they explain, how well they explain observations, and how effective they are in predicting new findings.
2. **Demonstrate understanding of the structure of atoms.**

SC.A.2.4.1 know that the number and configuration of electrons will equal the number of protons in an electrically neutral atom and when an atom gains or loses electrons, the charge is unbalanced.

SC.A.2.4.3 know that a number of elements have heavier, unstable nuclei that decay, spontaneously giving off smaller particles and waves that result in a small loss of mass and release a large amount of energy.

SC.A.2.4.4 know that nuclear energy is released when small, light atoms are fused into heavier ones.

SC.A.2.4.5 know that elements are arranged into groups and families based on similarities in electron structure and that their physical and chemical properties can be predicted.

3. **Demonstrate understanding of the structure and properties of matter.**

SC.A.1.4.2 know that the vast diversity of the properties of materials is primarily due to variations in the forces that hold molecules together.

SC.A.1.4.3 know that a change from one phase of matter to another involves a gain or loss of energy.

SC.A.2.4.2 know the difference between an element, a molecule, and a compound.

SC.A.2.4.6 understand that matter may act as a wave, a particle, or something else entirely different with its own characteristic behavior.
4. **Demonstrate understanding of chemical reactions.**
 SC.A.1.4.1 know that the electron configuration in atoms determines how a substance reacts and how much energy is involved in its reactions.
 SC.A.1.4.4 experiment and determine that the rates of reaction among atoms and molecules depend on the concentration, pressure, and temperature of the reactants and the presence or absence of catalysts.
 SC.A.1.4.5 know that connections (bonds) form between substances when outer-shell electrons are either transferred or shared between their atoms, changing the properties of substances.
 SC.F.1.4.1 know that the body processes involve specific biochemical reactions governed by biochemical principles.
 SC.G.1.4.3 know that the chemical elements that make up the molecules of living things are combined and recombined in different ways.

5. **Demonstrate understanding of forces and motions.**
 SC.C.2.4.1 know that acceleration due to gravitational force is proportional to mass and inversely proportional to the square of the distance between the objects.
 SC.C.2.4.2 know that electrical forces exist between any two charged objects.
 SC.C.2.4.3 describe how magnetic force and electrical force are two aspects of a single force.
 SC.C.2.4.4 know that the forces that hold the nucleus of an atom together are much stronger than electromagnetic force and that this is the reason for the great amount of energy released from the nuclear reactions in the sun and other stars.
 SC.C.2.4.5 know that most observable forces can be traced to electric forces acting between atoms or molecules.
 SC.C.2.4.6 explain that all forces come in pairs commonly called action and reaction.

6. **Demonstrate understanding of conservation of energy and increase in disorder.**
 SC.B.1.4.1 understand how knowledge of energy is fundamental to all the scientific disciplines (e.g., the energy required for biological processes in living organisms and the energy required for the building, erosion, and rebuilding of the Earth).
 SC.B.1.4.2 understand that there is conservation of mass and energy when matter is transformed.
7. Demonstrate understanding of interactions of energy and matter.
 SC.A.2.4.4 know that nuclear energy is released when small, light atoms are fused into heavier ones.
 SC.B.1.4.3 know that temperature is a measure of the average translational kinetic energy of motion of the molecules in an object.
 SC.B.1.4.4 know that as electrical charges oscillate, they create time-varying electric and magnetic fields that propagate away from the source as an electromagnetic wave.
 SC.B.1.4.6 know that the first law of thermodynamics relates the transfer of energy to the work done and the heat transferred.
 SC.B.1.4.7 know that the total amount of usable energy always decreases, even though the total amount of energy is conserved in any transfer.
 SC.B.2.4.1 know that the structure of the universe is the result of interactions involving fundamental particles (matter) and basic forces (energy) and that evidence suggests that the universe contains all of the matter and energy that ever existed.

8. Demonstrate understanding of interactions between science and technology.
 SC.H.3.4.2 know that technological problems often create a demand for new scientific knowledge and that new technologies make it possible for scientists to extend their research in a way that advances science.
 SC.H.3.4.3 know that scientists can bring information, insights, and analytical skills to matters of public concern and help people understand the possible causes and effects of events.
 SC.H.3.4.4 know that funds for science research come from federal government agencies, industry, and private foundations and that this funding often influences the areas of discovery.
 SC.H.3.4.5 know that the value of a technology may differ for different people and at different times.
 SC.H.3.4.6 know that scientific knowledge is used by those who engage in design and technology to solve practical problems, taking human values and limitations into account.